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We present a detailed study of the linear stability of the plane Couette–Poiseuille flow
in the presence of a crossflow. The base flow is characterized by the crossflow Reynolds
number Rinj and the dimensionless wall velocity k. Squire’s transformation may be
applied to the linear stability equations and we therefore consider two-dimensional
(spanwise-independent) perturbations. Corresponding to each dimensionless wall
velocity, k ∈ [0, 1], two ranges of Rinj exist where unconditional stability is observed.
In the lower range of Rinj , for modest k we have a stabilization of long wavelengths
leading to a cutoff Rinj . This lower cutoff results from skewing of the velocity profile
away from a Poiseuille profile, shifting of the critical layers and the gradual decrease
of energy production. Crossflow stabilization and Couette stabilization appear to
act via very similar mechanisms in this range, leading to the potential for a robust
compensatory design of flow stabilization using either mechanism. As Rinj is increased,
we see first destabilization and then stabilization at very large Rinj . The instability is
again a long-wavelength mechanism. An analysis of the eigenspectrum suggests the
cause of instability is due to resonant interactions of Tollmien–Schlichting waves. A
linear energy analysis reveals that in this range the Reynolds stress becomes amplified,
the critical layer is irrelevant and viscous dissipation is completely dominated by
the energy production/negation, which approximately balances at criticality. The
stabilization at very large Rinj appears to be due to decay in energy production, which
diminishes like R−1

inj . Our study is limited to two-dimensional, spanwise-independent
perturbations.

1. Introduction
From the perspective of applications in technology, Poiseuille flow of viscous fluid

along a duct is undoubtedly one of the most important flows studied as it underpins
the field of hydraulics. Instability and subsequent transition from laminar flow marks
a paradigm shift in the dominant transport mechanisms of mass, momentum and
heat, and it is for this reason that the subject remains of enduring interest, even after
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more than 100 years of study. In this paper, we focus on two methods for affecting the
linear stability of plane Poiseuille (PP) flow. The first method consists of introducing
a Couette component to the flow, by translation of one of the walls. The second
method consists of introducing a crossflow, e.g. via injection through a porous wall.
While both effects have been studied individually to some extent, there are fewer
studies of the two effects combined, which is the main focus here.

We first summarize the effects of a Couette component on a plane Poiseuille flow.
The main curiosity here stems from the observation that PP flow is linearly unstable
when the critical Reynolds number exceeds Rc ≈ 5772 (Reynolds number based on
the centreline axial velocity and the half-width of the channel; see Orszag 1971),
whereas the plane Couette (PC) flow is absolutely stable with respect to infinitesimal
amplitude disturbances, Rc = ∞; see Romanov (1973). Superimposing PP and PC
flows, we may ask if a small Couette component can affect the stability of the PP
flow. The stability of plane Couette–Poiseuille (PCP) flow was first studied by Potter
(1966) and later by Hains (1967), Reynolds & Potter (1967) and Cowley & Smith
(1985). The results are typically understood with respect to a Reynolds number that
is based on the maximal velocity of the Poiseuille component, say Rp , and the ratio
of wall velocity to maximal velocity of the Poiseuille component denoted by k. For
small Couette components, k, it is possible to observe some destabilization of the flow
(depending on the wavenumber), but as soon as k > 0.3 a strong stabilization of the
flow sets in. As the velocity ratio k exceeds 0.7, the neutral stability curve completely
vanishes and the flow becomes unconditionally linearly stable, i.e. Rc → ∞. The term
‘cutoff’ velocity has been used to describe this stabilization; see Reynolds & Potter
(1967).

Although plane Couette flows are widely studied, it is worth noting that they are
actually difficult to produce, i.e. outside of the computational and theoretical domain.
In many duct flows, axial translation of a wall is either not possible or limited in terms
of speed. High R frequently means high velocities, lowering the range of achievable
k as the flow velocity increases. Therefore, the range of practical flows for which a
sufficiently stabilizing Couette component can be introduced is limited and we know
of no technological applications where this is used for stabilization.

Annular Couette–Poiseuille (ACP) flows are more practically relevant and have
also been studied extensively (Mott & Joseph 1968; Sadeghi & Higgins 1991). For
example, ACP flows occur when removing/inserting drillpipe or casing from vertical
wellbores during an operation called ‘tripping’. Sadeghi & Higgins (1991) studied the
flow between two concentric cylinders, the outer being stationary while the inner is
moved with a constant (dimensionless) velocity k in the streamwise direction. They
showed that varying the radius ratio (η) between the outer and inner cylinders can
have a dramatic effect on the stability characteristics. The limit η → 1 approximates
PCP flow and is unconditionally linearly stable for k � 0.7, thereby confirming Potter
(1966). By increasing η, the cutoff condition is attained for lower values of k and the
cutoff relation between k–η is almost linear. Similar to Mott & Joseph (1968), they
argued that increasing η increases the asymmetry of the base flow profile which in
turn increases the stability with respect to axisymmetric disturbances. Their findings
are very relevant to our work, because we later show that the stability achieved by
increasing η in ACP flows and that achieved by applying a small crossflow in PCP
flows are essentially similar.

Shear flows with crossflow occur in a range of natural settings as well as in
various technological applications. As examples, we cite studies in sediment–water
interfaces over permeable seabeds (Goharzadeh, Khalili & Jrgensen 2005), fluid
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transport and consequent mass transfer at the walls of blood vessels, the lungs
and kidneys (Majdalani, Zhou & Dawson 2002), and flow through the fractures of
geological formations (Berkowitz 2002). In some technological applications, crossflow
is an inherent part of the process, e.g. dewatering of pulp suspensions in paper
making, whereas in others it is introduced to affect the stability. An example of the
latter is the use of wall suction to delay the transition to turbulence over the surface
of an aircraft wing (Joslin 1998).

The stability of PP flow with crossflow was first analysed by Hains (1971) and
Sheppard (1972), both of whom have shown that a modest amount of crossflow
produces a significant increase of the critical Reynolds number. These results are
however slightly problematic to interpret in absolute terms, because at a fixed pressure
gradient along the channel, increasing the crossflow decreases the velocity along
the channel (hence effectively the Reynolds number). This difficulty was noted by
Fransson & Alfredsson (2003), who used the maximal channel velocity as their velocity
scale (instead of that based on the PP flow without crossflow), and thus separated
the effects of base velocity magnitude from those of the base velocity distribution.
Using this velocity scale in their Reynolds number R, they showed regimes of both
stabilization and destabilization as the crossflow Reynolds number was increased.
For example, for R = 6000 and wavenumber α = 1, Fransson & Alfredsson (2003)
have shown that the crossflow was stabilizing up to a crossflow Reynolds number
Rinj ≈ 3.4, and then starts destabilizing before re-stabilizing again at Rinj ≈ 635. The
initial regime of stabilization is the one corresponding to the earlier results.

Although crossflow affects the base velocity profile, the main change to the linear
stability problem is to add an inertial crossflow term to the Orr–Sommerfeld operator.
One reason why addition of terms such as the crossflow term can destabilize an
otherwise stable shear flow is suggested by the two-dimensional instability of the
Blasius boundary layer, as studied by Baines, Majumdar & Mitsudera (1996). In
such flows, the resulting growing disturbance is known as a Tollmien–Schlichting
(T-S) wave. They showed that the interaction between two idealized modes, viz. an
‘inviscid’ neutral mode at zero viscosity and a decaying viscous mode (or modes)
existing at uniform shear, undergoes resonant interactions. The latter is forced by the
former through the no-slip wall boundary conditions.

In this study, we focus on the combination of crossflow and Couette component.
Our motivation stems from a desire to understand how the two mechanisms interact,
because in terms of technological application different mechanical configurations may
be more or less amenable to crossflow and/or wall motion. This means that it is useful
to know when one effect may compensate for the other in stabilizing (or destabilizing)
a given flow. To our knowledge, the stability of PCP flow with crossflow has only been
studied in any generality by Hains (1971). In considering the base flow for PCP flow
with crossflow (which is parameterized by Rinj and k), the relation kRinj = 4 defines an
interesting paradigm in which the base velocity in the axial direction is linear. These
Couette-like flows have been studied by Nicoud & Angilella (1997) for increasing
Rinj . They found a critical value of Rinj ≈ 24, below which no instability occurs (we
have translated their critical value of 48 into the Rinj that we use). Therefore, we
observe that an understanding of crossflow PCP flows is far from complete. We aim
at contributing to this understanding.

The three-dimensional linear stability of PCP flow with crossflow is amenable to
Squires transformation, so that the linear instability occurs first for two-dimensional
(spanwise-independent) perturbations. We study these perturbations here. Our aim is
to demarcate clearly in the (Rinj , k)-plane, regions of unconditional stability, i.e. where
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there is a cutoff wall velocity or injection velocity. We also wish to understand the
underlying linear stability mechanisms as Rinj and k are varied.

Although the study of two-dimensional perturbations is justified from the pure
perspective of linear stability, three-dimensional and nonlinear effects are likely to be
relevant in instabilities that are observed to grow, i.e. the actual transition. The past
two decades have seen an extensive study of transient growth mechanisms, because
of non-normality of the operator associated with linearized Navier–Stokes equations.
Algebraic growth of O(R2) may occur for linearly stable disturbances that decay only
slowly over a time scale of O(R). It has been proposed that this transient algebraic
growth is responsible for subcritical transition in wall-bounded shear flows. For an
overview of these developments, we refer to Reddy, Schmid & Henningson (1993),
Schmid & Henningson (2001), Chapman (2002) and Schmid (2007).

At the same time as transient growth mechanisms have undergone extensive
research, self-sustaining nonlinear mechanisms were proposed by Waleffe and
others (Hamilton, Kim & Waleffe 1995; Waleffe 1997). In this scenario, energy from
the mean flow can be fed back into streamwise vortices, thus resisting viscous decay.
Self-sustained exact unstable solutions to the Navier–Stokes equations were found
by Faisst & Eckhardt (2003) and Wedin & Kerswell (2004). Much current effort is
focused on understanding the link between these self-sustained unstable solutions and
observed transitional phenomena, such as intermittency, streaks, puffs and slugs (see
e.g. Hof et al. 2004, 2005; Eckhardt et al. 2007; Kerswell & Tutty 2007).

Our study does not deal with any of the complexities of transition mentioned above,
and as such the relevance may be questioned. This is a fair criticism, but, on the other
hand, we note that for other classical shear flows that are linearly stable at all R, careful
control of apparatus imperfections and the level of flow perturbations can significantly
retard the point at which transition is observed. For example, in Hagen–Poiseuille
flow of Newtonian fluids, one typically observes transition to turbulence starting
for R � 2000. However, an experimental flow loop in Manchester, UK, produces
stable laminar flows for R ≈ 24 000 (Hof et al. 2004; Peixinho & Mullin 2006), and
stable flows have even been reported up to R ≈ 100 000 (Pfenniger 1961). This all
suggests that a significantly enhanced stability may be achieved experimentally, where
predicted by the linear theory.

The question of how to achieve a PCP flow with crossflow in practice is also relevant.
Evidently all Poiseuille flows occur in finite geometries with entrance effects, sidewalls
and imperfections in the planar walls, so that the notion of a truly planar infinite flow
is anyway flawed. Uniform base flows studied in hydrodynamic stability are invariably
an approximation of experimental reality. Even in the absence of wall motion, a planar
Poiseuille flow is difficult experimentally, due to spanwise perturbations and inflow
non-uniformities. This said, a geometry with a uniformly translating channel wall is
particularly difficult to achieve and as mentioned before, k ≈ 0.7 is difficult for high
R flows where R is increased via flow rate. Imposing a uniform crossflow along with
a streamwise pressure variation is more practically achievable (see e.g. Vadi & Rizvi
2001). A uniform trans-membrane pressure crossflow micro-filtration system is able
to maintain uniform trans-membrane pressure with high crossflow velocity (V̂inj ) and
improves the utilization of available filtration area. In the patent of Sandblom (2001)
the concept of operating a membrane filtration unit using UTMP has been proposed,
such that pressure drop along the channel can be adjusted independent of V̂inj . A
different generic concept for achieving a uniform crossflow over a finite length of a
porous-walled channel consists of injecting the fluid along a secondary channel behind
one of the porous walls that has a linearly converging geometry. Although there are
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clear technical challenges, it is worth remarking that the injection velocities needed
for stability are very modest by comparison with the wall velocities, and therefore as
a target appear achievable.

An outline of the paper is as follows. In § 2, we introduce the base flow and linear
stability problem. We describe the numerical method and present benchmark results
that illustrate typical effects of varying Rinj and k. These results serve to motivate
the presentation of results, which follows in three sections. Section 3 considers low
Rinj and significant k, where we see that long wavelengths dominate. In § 4, we
characterize the flows for intermediate Rinj and small k, where short wavelengths are
the least stable. Finally, we consider large Rinj in § 5, where both destabilization and
eventual stabilization are found. In § 6, we conclude with a summary of the principal
results.

2. Stability of plane Couette–Poiseuille flow with crossflow
The base flow considered in this paper is a PCP flow with imposed uniform

crossflow. This flow is two-dimensional, viscous, incompressible and fully developed
in the streamwise direction, x̂ (all dimensional variables are denoted by a ‘hat’).
The imposed base velocity v̂ in the ŷ-direction is constant and equal to the
injection/suction velocity V̂inj . Because v̂ is constant, the x̂-component of velocity, û

depends only on ŷ. The flow domain is bounded by walls at ŷ = ± ĥ and is driven
in the x̂-direction by a constant pressure gradient and translation of the upper wall,
at speed Ûc. The x̂-component of velocity, û(ŷ), is found from the x̂-momentum
equation, which simplifies to

V̂inj

∂û

∂ŷ
= − 1

ρ̂

∂p̂

∂x̂
+ ν̂

∂2û

∂ŷ2
, (2.1)

where ρ̂ is the density, ν̂ = µ̂/ρ̂ is the kinematic viscosity, and µ̂ is the dynamic
viscosity. The boundary conditions at ŷ = ± ĥ are

û(−ĥ) = 0, û(ĥ) = Ûc. (2.2)

To scale the problem we scale all lengths with ĥ; hence (x, y) = (x̂/ĥ, ŷ/ĥ). For the
velocity scale two choices are common. First, the imposed pressure gradient defines a
‘Poiseuille’ velocity scale:

Ûp = − ĥ2

2µ̂

∂p̂

∂x̂
, (2.3)

which is equivalent to the maximum velocity of the plane Poiseuille flow, driven by the
pressure gradient alone. Second, we may take the maximum velocity, which we need
to compute. Ûp is the choice of Potter (1966), and thus allows one to compare directly
with the studies of PCP flows. In the absence of a crossflow, the maximal velocity is
not actually very sensitive to the wall velocity Ûc, at least for Ûc < Ûp , which covers
the range over which the flow stabilizes. However, in the case of a strong crossflow,
the x̂-velocity is reduced significantly below Ûp , which therefore loses its meaning.
Consequently, we adopt the second choice and scale with the maximal velocity, Ûmax .
This choice retains physical meaning in the base velocity, but does introduce algebraic
complexity.
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The solution is found from (2.1) and (2.2) after detailed but straightforward algebra:

û(ŷ) = Ûp

[
4 coshRinj − kRinj e

−Rinj + [kRinj − 4]eRinj ŷ/ĥ

2Rinj sinhRinj

+
2ŷ

Rinj ĥ

]
, (2.4)

where k and Rinj are defined by

k =
Ûc

Ûp

, (2.5)

Rinj =
V̂inj ĥ

ν̂
. (2.6)

These two dimensionless parameters uniquely define the dimensionless base flow. The
parameter k is the velocity ratio of Couette to Poiseuille velocities, which is useful
as it allows direct comparison with earlier results on the stabilization of PCP flows
without crossflow. The parameter Rinj is simply a Reynolds number based on the
injection velocity. Primarily, here we consider the ranges k ∈ [0, 1] and Rinj � 0.

For relatively weak crossflow velocities, the velocity component u(y) has a single
maximum at a value of y = ymax defined by

eRinj ymax =
sinhRinj

Rinj

4

4 − kRinj

. (2.7)

The maximal velocity Ûmax is then evaluated from (2.4). Because sinhRinj � Rinj , we
can see that ymax > 0 for k � 0 and Rinj > 0. Both the injection crossflow and Couette
component act to skew the velocity profile towards the upper wall. For stronger
crossflow velocities (or sufficiently large k), the maximal velocity occurs at the upper
wall, i.e. Ûmax = Ûc.

The division between weak and strong crossflows, taking into account also the
Couette component, is defined by

kRinj = 4

[
1 − sinhRinj

Rinj eRinj

]
. (2.8)

The dimensionless base velocity is given by

u(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 coshRinj − kRinj e
−Rinj − [4 − kRinj ]e

Rinj y + 4y sinhRinj

4 coshRinj − kRinj e−Rinj − [4 − kRinj ]eRinj ymax + 4ymax sinhRinj

,

kRinj � 4

[
1 − sinhRinj

Rinj eRinj

]
,

1

k

[
4 coshRinj − kRinj e

−Rinj − [4 − kRinj ]e
Rinj y

2Rinj sinhRinj

+
2y

Rinj

]
,

kRinj > 4

[
1 − sinhRinj

Rinj eRinj

]
.

(2.9)
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Figure 1. Mean velocity distribution for k = 0.5 and Rinj = 0, 1, 4, 8, 15 and 30
(Rinj =30 denoted by �).

It can be verified that in the limit Rinj → 0, with k fixed, the classical form of PCP
base velocity profile is retrieved:

u(y) ∼
1 − y2 +

k

2
(1 + y) + Rinj

[
1

3
(y − y3) − k

4
(1 − y2)

]

1 +
k

2
+

k2

16
− Rinj

[
k

6
− k3

64

] (2.10)

as Rinj → 0, with k � 4[1 − sinhRinj/(Rinj e
Rinj )]/Rinj ∼ 4[1 + Rinj/3].

Examples of the base velocity profile are given in figure 1, for k = 0.5 and different
values of Rinj . Note that for Rinj =8, when kRinj = 4, the velocity profile is linear. This
flow has been termed a ‘generalized Couette’ flow by Nicoud & Angilella (1997).

We shall denote differentiation with respect to y by the operator D. The first and
second derivatives of the base flow, Du and D2u respectively, influence the stability of
the flow. We find that D2u has sign determined by (kRinj −4) and increases in absolute
value exponentially towards the upper wall. For kRinj < 4, the velocity is concave and
is convex otherwise. Because D2u does not change sign, the maximal absolute value
of the first derivative is found at either the upper or lower wall, y = ±1. The maximal
velocity gradients are found at the lower wall for small Rinj and also for a range of
Rinj close to kRinj = 4, but otherwise are found at y = 1; see figure 2(a). At large Rinj ,
the maximal velocity increases almost linearly:

|Du|max = |Du(y = 1)| =
1

k

[
[kRinj − 4]eRinj

2 sinhRinj

+
2

Rinj

]
∼ Rinj − 4

k
+

2

kRinj

+ O(e−2Rinj ).

(2.11)

Figure 2(b) shows examples of the profiles of D2u. We observe that D2u ≈ 0 over a
large range of y, close to the lower wall, whenever a significant amount of crossflow
is present, i.e. Rinj � 1.

2.1. Dimensionless groups

The base flow is fully defined by the parameters k and Rinj , as discussed above.
In addition, the transient flow and associated stability problem will depend on the
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Figure 2. (a) Maximal velocity gradient, |Du|max , plotted against Rinj for k = 0.35, 0.5, 0.65
(k = 0.65 denoted by �). The thick line indicates where the maximum is attained at y = − 1;
otherwise at y = 1. (b) Variation of D2u with y for k = 0.5 for Rinj = 0 (�); Rinj = 4 (�);
Rinj = 8 (×); Rinj = 12 (�).

streamwise Reynolds number, R, which we define in terms of Ûmax , i.e.

R =
Ûmax ĥ

ν̂
. (2.12)

To aid the reader in interpreting our results in terms of those previously published,
it is helpful to consider also a Reynolds number based on the Poiseuille velocity, Ûp ,

say Rp = Ûpĥ/ν̂. Straightforwardly, we find R = RpF (k, Rinj ):

F (k, Rinj ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 coshRinj − kRinj e
−Rinj + [kRinj − 4]eRinj ymax + 4ymax sinhRinj

2Rinj sinhRinj

,

kRinj � 4

[
1 − sinhRinj

Rinj eRinj

]
,

k, kRinj > 4

[
1 − sinhRinj

Rinj eRinj

]
.

(2.13)

Note that F (k, Rinj ) = Ûmax/Ûp , which is fixed by the parameters k and Rinj . Thus, for
fixed k and Rinj an increase in R is interpreted as an increase in Rp and vice versa.
It is also useful to know the ratio of upper wall velocity to the maximal velocity,
i.e. Ûc/Ûmax , which we shall denote by k̃, given simply by the ratio k/F (k, Rinj ):

k̃(k, Rinj ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2kRinj sinhRinj

4 coshRinj − kRinj e−Rinj + [kRinj − 4]eRinj ymax + 4ymax sinhRinj

,

kRinj � 4

[
1 − sinhRinj

Rinj eRinj

]
,

1, kRinj > 4

[
1 − sinhRinj

Rinj eRinj

]
.

(2.14)

The ratio R/Rp and the upper wall speed k̃ are illustrated in figure 3 for convenience.
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Figure 3. (a) R/Rp = F (k, Rinj ) for k = 0, 0.2, 0.4, 0.6, 0.8, 1; (b) dimensionless wall speed

k̃(k, Rinj ) for k =0.2, 0.4, 0.6, 0.8, 1. Symbols: �, k = 0.2; �, k = 1.

2.2. The stability problem

The base flow is two-dimensional, but because v = Rinj is constant, the three-
dimensional linear stability equations are only modified by the addition of a constant
convective term:

Rinj

∂

∂y
u′,

where u′ =(u′, v′, w′) denotes the linear perturbation. The classical Squire
transformation can therefore be applied to the temporal problem, showing that
for any unstable three-dimensional linear disturbance there exists an unstable two-
dimensional linear disturbance at lower R; see Squire (1933).

It suffices to consider only two-dimensional disturbances and we adopt the usual
normal mode approach to linear spatially periodic perturbations, introducing a
streamfunction that we represent in modal form as

ψ̂(x, y, t) = φ(y)e[iα(x−ct)], (2.15)

with u′ = Dφ(y)e[iα(x−ct)], v′ = −iαφ(y)e[iα(x−ct)]. Thus, α is real, denoting the
wavenumber, c denotes the complex wave speed, (c = cr + ici, i =

√
−1), and

φ(y) denotes the amplitude of the streamfunction perturbation. The modified Orr–
Sommerfeld (O-S) equation for the flow is

iαR[(c − u)(α2 − D2) − D2u]φ − RinjD(α2 − D2)φ = (α2 − D2)2φ, (2.16)

and the boundary conditions are

φ(±1) = Dφ(±1) = 0. (2.17)

The inclusion of the injection crossflow results in additional third-order derivatives
in the inertial terms, i.e. RinjD(α2 − D2)φ. Note that Rinj also influences stability via
the base velocity profile u(y). Equations (2.16) and (2.17) constitute the eigenvalue
problem. The eigenvalue c is parameterized by the four dimensionless groups
(α, R, Rinj , k) and the condition of marginal stability is

ci(α, R, Rinj , k) = 0. (2.18)

We attempt to characterize the stability of (2.16) and (2.17) for positive (α, R, Rinj , k).
We may note that the limit R → ∞ for finite Rinj reduces (2.16) to the Rayleigh
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equation. Because D2u is of one sign only, there are no inflection points and hence
no purely inviscid instability. This suggests that the instabilities of (2.16) and (2.17)
will be viscous in nature.

The addition of the constant crossflow terms does not fundamentally alter the
O-S problem, and we expect a discrete spectrum. To find the spectrum of (2.16) and
(2.17), we use a spectral approach, representing φ by a truncated sum of Chebyshev
polynomials:

φ =

N∑
n=0

anTn (y) for y ∈ [−1, 1] , (2.19)

where N is the order of the truncated polynomial, an is the coefficient of the nth
Chebyshev polynomial Tn (y). This method is described for example by Schmid &
Henningson (2001) and is widely used. The discretized problem is coded and solved
in Matlab. The accuracy of the code has been checked against the results of Mack
(1976) for the Blasius boundary layer, with various results for PP flow in Schmid &
Henningson (2001), with the PCP flow results of Potter (1966), and finally against
results for PP flow with crossflow (see Sheppard 1972; Fransson & Alfredsson 2003).
The results are accurate up to three, four and five significant places when validated
against Potter (1966), Mack (1976) and Fransson & Alfredsson (2003), respectively.
All the numerical results given below have been computed with N = 120. On using
200 collocation points, the growth rates changed only in the fourth significant place
in the worst case.

2.3. Characteristic effects of varying k and Rinj

Before starting a systematic analysis of (2.16) and (2.17), we briefly show some example
results that illustrate the characteristic effects of varying the Couette component,
k, and the crossflow component, Rinj . These examples also serve to establish the
framework of analysis used later in the paper. With reference to PP flow, Potter
(1966) first observed that the stability is increased by adding a Couette component
while Fransson & Alfredsson (2003) showed that crossflow can stabilize or destabilize
PP flow.

2.3.1. Eigenspectra

Setting (α, R) = (1, 6000), we investigate variations in the eigenspectrum of (2.16)
and (2.17). According to a classification proposed by Mack (1976), the spectrum of
PP flow may be divided into three distinct families: A, P and S. Family A exhibits
low phase velocity and corresponds to the modes concentrated near the fixed walls.
Family P represents phase velocities cr close to the maximum velocity in the channel.
Family S corresponds to the mean modes and has phase velocity cr close to the mean
velocity. In figures 4(a) and 4(b), we track the eigenmodes as k and Rinj , respectively,
are varied from zero. The initial condition (denoted by a square) represents the PP
flow.

Referring to figure 4(a) (where Rinj = 0), addition of the Couette component
increases the mean velocity: the S modes shift from cr = 0.6667 at k = 0 (PP flow) to
cr = 0.7513 at k = 1. The family of P modes is also shifted to the right. The A modes
are associated with both walls, and as k increases we see a splitting of the family, with
the upper wall modes moving to the right as k is increased. The least stable mode is a
wall mode associated with the lower wall, which we observe stabilizes monotonically
as k is increased. Figure 4(b) shows the effects of increasing Rinj (holding k = 0).
The least stable A mode of PP flow initially stabilizes and then destabilizes with
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increasing Rinj . This particular behaviour has also been observed by Fransson &
Alfredsson (2003). For large Rinj , the A, P and S families have disappeared, instead
leaving two distinct families of modes. It appears that each of the A, P and S families
splits, with some modes entering each of the two families (this alternate splitting is
most evident for the S modes). As observed by Nicoud & Angilella (1997), the phase
speed no longer lies in the range of the axial velocity. This does not violate the
conditions on cr , given by Joseph (1968) and Joseph (1969), because these conditions
are derived for parallel flows only.
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2.3.2. Increasing Rinj

Next, we illustrate the qualitative effects of increasing Rinj at fixed (α, R, k) in
figure 5(a). We again fix α =1 and R = 6000, and show the variation of the least
stable eigenvalue, for k = 0, 0.5, 1. Our results for k = 0 (PP flow) may be compared
directly with those of Fransson & Alfredsson (2003). We observe that as Rinj

increases we have an initial range of stabilization (ci,crit decreasing), followed by
a range of destabilization (ci,crit increasing), and finally again stabilization at large
Rinj (ci,crit decreasing). Qualitatively, we have observed these same three ranges of
decreasing/increasing ci,crit , as Rinj increases, for all numerical results that we have
computed, and this provides a convenient framework within which to describe our
results.

For fixed (α, R, k), the case Rinj = 0 may be either stable or unstable, in which cases
there are respectively two or three marginal stability values of Rinj . We denote these
marginal values of Rinj by Rinj ,1, Rinj ,2, Rinj ,3, noting that when Rinj =0 is stable Rinj ,1 is
absent. More clearly, Rinj ,2 will always represent a transition from stable to unstable,
while Rinj ,1 and Rinj ,3 denote transitions from unstable to stable. The PCP flows for
k = 0.5 and 1 are stable for (α, R) = (1, 6000) in the absence of crossflow, Rinj = 0. For
a larger R, k = 0.5 is unstable at Rinj = 0, but k = 1 remains stable for all (α, R).

Figure 5(b) shows the maximal growth rate γ , for increasing Rinj at different R,
with k = 0.5. The maximal growth rate is computed over wavenumbers α ∈ [0, 1]:

γ = max
α∈[0,1]

{αci}, (2.20)

which often captures the largest growth rates over all α. We observe that the first
marginal value Rinj ,1 increases with R, but appears to converge towards a finite
value as R → ∞. The second marginal value of Rinj ,2 appears independent of R (at
least numerically). For k =0.5 we have Rinj ,2 ≈ 24.7. Nicoud & Angilella (1997) have
observed a similar behaviour in studying the generalized Couette flow (for which
the constraint, kRinj = 4, is always satisfied). They have found Rinj ,2 ≈ 24 (note that
Nicoud & Angilella (1997) use the full channel width as their length scale, and
therefore report Rinj ,2 ≈ 48, in their variables). In contrast, the third marginal value,
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Rinj ,3, is strongly dependent on R. For example, for k =0.5, the values corresponding
to R =10 000 and 100 000 are Rinj ,3 ≈ 83 and Rinj ,3 ≈ 287, respectively.

2.3.3. Increasing k

Figure 6 explores the effects of increasing the Couette component k, on γ and
on the marginal values of Rinj . Figure 6(a) indicates that the sensitivity of Rinj ,2 to
k is also not extreme: we have found that this transition occurs within the range
∼22–25 for k ∈ [0, 1]. For each value of k examined, we also observe numerically a
similar independence of Rinj ,2 from R as seen earlier in figure 5(b) for k = 0.5. The
third marginal value, Rinj ,3, is strongly dependent on k. For example, at R = 40 000,
Rinj ,3(k = 1) ≈ 120 and Rinj ,3(k = 0.8) ≈ 135. In general, increasing k shifts Rinj ,3 to the
left, thereby decreasing the span of the unstable region. Increasing k also decreases
the maximum value of γ .

Figure 6(b) looks at the first transition, Rinj ,1 at R = 40 000. Potter (1966) was
the first to observe that for PCP flows (i.e. Rinj = 0), a gradual increase in the wall
velocity results in crossing a ‘cutoff’ value of k, say k1, such that for k > k1 the flow
is unconditionally linearly stable. It has already been pointed out from the results of
figure 5(b) that Rinj ,1 is finite as R → ∞. In addition, the results in figure 6(b) indicate
that Rinj ,1 decreases with k at a finite R. Hence, it can be inferred that as R → ∞, the
cutoff wall velocity, k1 = k1(Rinj ), must decrease with Rinj .

3. PCP flows and the effects of small Rinj

Having developed a broad picture of the different transitions occurring in the flow,
we now focus in depth on each range of Rinj , to understand the stability mechanisms
in play. We start with the range of small Rinj .

PCP flows without crossflow are stable to inviscid modes, but viscosity admits
additional modes, i.e. the T-S waves, which may destabilize, according to the value
of k. When αR 	 1 with c ∼ O(1), viscous effects occur in thin oscillatory layers: (i)
adjacent to the walls (of thickness ∼(αR)−1/2) and (ii) close to the critical point(s),
yc, where u(yc) = cr,crit are found (of thickness ∼(αR)−1/3). It is in the critical layers
that we see peaks in the distribution of energy production, implying transfer from
the base flow. Potter (1966) put forward the argument that for a dimensionless wall
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Figure 7. Critical values for k =0.5: (a) neutral stability curves for Rinj =0 (×), 0.3 (�) and
0.53 (�); (b) variation in cr,crit with Rinj .

velocity that exceeds cr,crit , the critical layer near the moving wall will vanish and
there remains only one critical layer, near the fixed lower wall. The thickness of this
second layer increases with wall velocity, thereby favouring stabilization.

This mechanism appears to correctly describe the long-wavelength perturbations (at
Rinj = 0), which are found to be the least stable for k ∼ O(1). Indeed Cowley & Smith
(1985) developed a long-wavelength analysis (α ∼ R) in order to predict the cutoff
value k1(Rinj = 0) ≈ 0.7. For values k ∼ O(1), PCP flows have only a single neutral
stability curve (NSC). However, Cowley & Smith (1985) noted that for smaller k,
multiple neutral stability curves could exist, and at shorter wavelengths. For example,
when 0 � k � R−2/7 there is one NSC, when R−2/7 � k � R−2/13 there are three NSCs,
and when R−2/13 � k 
 1 there are two NSCs (see Cowley & Smith 1985). Thus, to
understand the effect of crossflow in PCP flows, the different regimes of k need to be
considered separately.

For Rinj ≈ 0, we expect the stability behaviour to be close to that of the PCP flow
without crossflow. Intuitively, we expect the crossflow to stabilize, and so study the
range cr,crit <k � k1(Rinj = 0). We examine the NSCs obtained from the O-S equation
corresponding to k = 0.5, under different values of Rinj ; see figure 7(a). As expected,
increasing Rinj results in a progressively larger critical R = Rcrit . We also observe that
both the upper and lower branches are oriented at an angle of 45◦ (i.e. α ∼ R−1) at high
values of R. On fixing Rinj and increasing k we have found that for successively larger
k the upper and lower branches move together as Rcrit increases, eventually coalescing
at k = k1(Rinj ). This mechanism is identical with that observed by Cowley & Smith
(1985), suggesting the applicability of a long-wavelength approximation in order to
predict k1(Rinj ). Figure 7(b) plots the values of cr at criticality, as Rinj is varied, also
for k =0.5. The critical values are tabulated in table 1. The dependence is initially
linear. We observe that k > cr,crit over the computed range.

3.1. Long-wavelength approximation

We follow the long-wavelength distinguished limit approach of Cowley & Smith
(1985), taking α → 0 and R → ∞, with λ= (αR)−1 fixed. The product αR is fixed
along the upper and lower branches of the NSC. Thus, as the two branches of the
NSC coalesce, in the (k, λ)-plane we observe k → k1(Rinj ). In the long-wavelength
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Rinj αcrit Rcrit cr,crit

0 0.3851 22600 0.2344
0.1 0.3576 22538 0.2370
0.2 0.3275 22924 0.2394
0.3 0.2950 23986 0.2415
0.4 0.2550 26321 0.2433
0.5 0.2000 31656 0.2452
0.6 0.1200 51115 0.2461

Table 1. Critical values for k = 0.5 and increasing Rinj .
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Figure 8. (a) Long-wave NSCs showing the dependence of λ on k for Rinj = 0 (– – –),

0.3 (– · –), 0.5 (——), 0.7 (–··–) and 1 (— —); (b) ci,crit versus k for λ= 2.5 × 10−5, and
Rinj = 0 (– – –), 0.3 (– · –), 1 (——), 1.2 (–··–) and 1.3 (— —).

limit, (2.16) becomes

iλ
[
D4 − RinjD

3
]
φ + (u − c) D2φ − (D2u)φ =0, (3.1)

with boundary conditions (2.17).
Figure 8(a) shows the NSC obtained from (3.1), plotted in the (k, λ)-plane for

various Rinj . The cutoff value k1(Rinj ) is the maximal value of k on each of these
curves. These values are listed in table 2. We also list the dimensionless wall speeds at
cutoff, i.e. k̃(k1, Rinj ). We observe that the cutoff wall speed decreases with Rinj . This
is in agreement with the concluding remarks of § 2.3.3.

Figure 8(b) shows ci for the least stable eigenvalue of the long-wavelength problem,
for fixed λ= 2.5 × 10−5 and different values of Rinj , as k is varied. When Rinj � 1.3, we
find that ci,crit � 0, ∀ k ∈ (cr,crit , k1(0)], implying that there are no neutral or unstable
long-wavelength perturbations in this range of k (i.e. at least until we approach the
second transition at Rinj ,2). Thus, in this initial range of say Rinj � 1.3, provided that
k > cr,crit , we can talk equally of a cutoff value for k or for Rinj .

3.2. Effects of asymmetry of the velocity profile

We observe that Rinj enters the stability problem in two distinct ways. The first
one represents the direct contribution of the additional third-order inertial term,
RinjD(α2 − D2)φ, in the O-S equation (2.16). For the second one, Rinj influences the
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Rinj ,1 k1 cr,crit k̃(k1, Rinj ,1)

0 0.70 0.2331 0.5070
0.3 0.60 0.2431 0.4657
0.5 0.54 0.2455 0.4386
0.7 0.48 0.2472 0.4085
1.0 0.38 0.2358 0.3489
1.29 0.19 0.1556 0.1939

Table 2. Cutoff values k1 and wave speed cr,crit for increasing Rinj .
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Figure 9. Eigenspectrum for (k, α, R) = (0.5, 0.2, 31656): (a) Rinj = 0.5 (critical conditions)
and (b) Rinj = 23.5. Symbols: �, the eigenspectrum from the O-S equation; �, the spectrum
obtained by neglecting the additional crossflow inertial term.

base velocity profile. To explore which of these effects is dominant, we show in figure 9
the spectra of (2.16) and (2.17) obtained with and without the term RinjD(α2 − D2)φ
included in the computation. The critical parameters corresponding to Rinj =0.5, in
table 1, are chosen and fixed for this comparison. Figure 9(a) shows the two spectra
at Rinj = 0.5, which are near identical, completely overlapping on the figure. This
suggests that at smaller Rinj , the effects of crossflow are manifested completely via the
base flow velocity profile. Figure 9(b) shows a similar comparative study at a larger
value of Rinj , closer to Rinj ,2. In this figure, we see a distinct difference between the
spectra. The additional third-order term is apparently responsible for the splitting of
the A, P and S families illustrated in figure 4(b).

In figure 10, we plot k1 against Rinj ( = Rinj ,1). A linear dependence is evident.
The slope of the line is approximately −1/3. The flow is unconditionally linearly
stable above the line and conditionally unstable otherwise. For small values of Rinj ,
we have seen in figure 1 that the principal effect is to skew the velocity profile towards
the upper wall. A similar asymmetric skewing of the velocity profile is also induced in
an ACP flow, through geometric means by varying the radius ratio η (defined as the
radius of the outer stationary cylinder to the radius of inner moving cylinder). ACP
flow has been studied extensively by Sadeghi & Higgins (1991), and we superimpose
their results on ours, in figure 10. The comparison is striking. We believe there are
two features of figure 10 that are unusual and worthy of note. Unsurprising is of
course the identical limits Rinj = 0 = (η − 1). Note that Rinj → 0 is the PCP flow, and
η → 1 represents the narrow gap limit of ACP, which is also the PCP flow.
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flow (Sadeghi & Higgins 1991).

The first feature is the very similar linear decay in critical k = k1(Rinj ), from the
PCP values. It can be argued along the lines of Mott & Joseph (1968) that for a fixed
Couette component (k), increasing the crossflow for the PCP flow, or the radius ratio
in the ACP flow of Sadeghi & Higgins (1991), skews the velocity profile more towards
the moving boundary, thus increasing asymmetry and thereby stability. Because it
has been observed in figure 9(a) that for small Rinj the influence of injection on
the eigenspectrum is through the velocity profile only, we do expect stabilization.
However, when (η − 1) and Rinj are O(1), we can see no obvious quantitative relation
between these flows and even the stability operators are quite different.

The second noteworthy feature of figure 10 is that there is a minimum value
of k1 (k1,min) below which it is not possible to produce unconditional stability by
applying (modest) crossflow. This minimum value is found when k1 → cr,crit . We have
found approximately that k1,min = 0.19 and the corresponding Rinj ,1 = 1.29. This is
very similar to Sadeghi & Higgins (1991), who found that the critical layer near the
moving wall of ACP flows remained up to cr,crit ≈ 0.18.

3.2.1. Linear energy budget considerations

The strong analogy with the ACP flow results of Sadeghi & Higgins (1991) suggests
that a similar mechanism may be responsible for the stabilization and cutoff behaviour.
To investigate this we examine the linear energy equation, derived in modal form
from the Reynolds–Orr energy equation. This yields the following two identities:

ci =
〈(φrDφi − φiDφr )Du〉 − 1

αR

[
I 2
2 + 2α2I 2

1 + α4I 2
0

]
I 2
1 + α2I 2

0

, (3.2)

cr =
〈(α2|φ|2 + |Dφ|2)u〉 +

Rinj

αR
〈α2(φrDφi − φiDφr ) + (DφrD

2φi − DφiD
2φr )〉

I 2
1 + α2I 2

0

,

(3.3)
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where Ik = Ik(φ) is the semi-norm defined by

Ik =

[∫ 1

−1

|Dkφ|2 dy

]1/2

, k = 0, 1, 2,

and where

〈f 〉 =

∫ 1

−1

f (y) dy.

Before proceeding further, we note that Rinj only appears indirectly in (3.2), reinforcing
the assertion that for order unity Rinj , the principal contribution to stability of injection
is via the mean flow. Indeed, in the long-wavelength limits of cutoff k that we have
studied, we have found values λ= (αR)−1 � 10−4 for instability. Thus, in (3.3) the
term directly involving Rinj has minimal effect on cr , explaining the observations in
figure 9(a).

The identity (3.2) can also be interpreted as an energy equation, in the form:

d

dt
〈T1〉 = 〈T2〉 − 1

R
〈T3〉 , (3.4)

where

T1 = 0.5(|Dφ|2 + α2|φ|2), d

dt
T1 = αciT1, (3.5)

T2 = 0.5ατDu, τ = φrDφi − φiDφr, (3.6)

T3 = 0.5(|D2φ|2 + 2α2|Dφ|2 + α4|φ|2). (3.7)

The left-hand side of (3.4) represents the temporal variation of the spatially averaged
(one wavelength) kinetic energy. The first term on the right-hand side of (3.4) is
the exchange of energy between the base flow and the disturbance. The last term,(
〈T3〉 /R

)
, represents the rate of viscous dissipation. At criticality, the two terms on

the right-hand side balance each other, but the spatial distributions of T2 and T3/R

indicate where the energy is generated and dissipated in the channel.
Sadeghi & Higgins (1991) extensively utilized this linear energy approach in studying

the effect of k on the stability of ACP flow. They found that increase in the value
of k − cr,crit decreases the Reynolds stress (τ ) near the moving wall until it becomes
negative, hence stabilizing. The critical layer near the moving wall vanishes for
k > cr,crit , and as k increases the Reynolds stress becomes progressively negative
within the critical layer at the fixed wall, but this behaviour is destabilizing because
the velocity gradient is negative there for ACP flow.

Figure 11(a–d ) examines the distribution of T2 and T3/R for the least stable
eigenmode for the parameters listed in table 1, i.e. we fix k =0.5 and increase Rinj

up to Rinj = Rinj ,1 ≈ 0.6. The critical layer is marked with a vertical line. We observe
that both the rate of energy transfer and the rate of viscous dissipation decrease
with the crossflow. Without crossflow, T2 is positive and negative respectively in the
lower (injection) and upper (suction) halves of the domain. Increasing the crossflow
decreases both the positive (near injection wall) and negative (near suction wall)
peaks. The location of the critical layer also moves away from the injection wall
because of the skewing of the velocity profile. When Rinj ≈ Rinj ,1, 〈T2〉 and 〈T3〉 /R

not only equalize but (because φ has been normalized) will have magnitudes O(α−1)
because αR = constant at cutoff (see also Sadeghi & Higgins 1991). This reduces the
energy budget as Rinj ≈ Rinj ,1, and is the primary reason for the cutoff.
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3.3. Summary

For the range of small to order unity Rinj with k � cr,crit , the flow instability is
dominated by long-wavelength perturbations. This instability mechanism exhibits a
cutoff phenomenon characterized by a near linear boundary in the (Rinj , k)-plane. The
initial cutoff mechanism is very similar to that for ACP, as studied by Sadeghi &
Higgins (1991), combining skewing of the velocity profile, shifting of the critical layer
and decay of the net perturbation energy.

4. Intermediate Rinj and short-wavelength instabilities
We now consider the range 0 � k � cr,crit , in which the critical layer at the upper

wall is still present. We investigate its stability characteristics by adding crossflow of
intermediate strength (0 � Rinj � 21), avoiding for the moment the second transition. It
is intuitive that the presence of the critical layer will affect the stability behaviour. To
verify this we have studied the two extremities of the range of k considered, i.e. k =0
(PP flow) and k = 0.18. The respective NSCs are shown in figure 12. It is evident that
the presence of the critical layers renders shorter wavelength modes unstable. Yet,
also with Rinj in this intermediate range, the stability increases dramatically.
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k1 Rinj ,1 αcrit

0 20.8 3.5227
0.0225 20.6 3.7458
0.0450 20.0 3.9381
0.0675 18.6 3.9831
0.0900 15.6 3.4146
0.1125 14.4 3.2112
0.1350 13.4 3.2112
0.1575 12.6 3.2112
0.1800 11.8 3.2112

Table 3. Cutoff values evaluated for shorter wavelength instabilities for R = 106.
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Figure 12. NSCs for (a) k =0 and (b) 0.18 at different Rinj . The symbols, which indicate
different values of Rinj , are as follows: ×, Rinj = 0; �, Rinj = 6 in (a) and 4 in (b); �, Rinj = 12 in
(a) and 8 in (b).

We have been unable to make any advance analytically in this range of Rinj , and
therefore have proceeded numerically. First, when we considered k � 0.19 for the range
of 1.3 <Rinj < 21, we found that the least stable modes are long-wavelength modes
and that these are linearly stable. Thus, k � 0.19 appears to represent an absolute
cutoff in this range of Rinj .

For smaller k, we have seen that the NSCs occur with wavenumbers that are
O(1) and apparently increasing with Rinj . Unlike the long-wavelength problem, the
asymptotic behaviour along the branches of the NSCs is not easily treated. At fixed
large R, we are able to compute numerically a cutoff value of k for increasing Rinj ,
i.e. k = k1(Rinj , R). These cutoff curves do lie below k ∼ 0.19, but are not wholly
independent of R, at least within the range of R up to which our numerical code is
reliable, i.e. it is quite possible that these asymptote to a cutoff curve as R → ∞, but
we cannot reliably evaluate this limit numerically. As an example of this numerical
cutoff (at R = 106), we have computed the cutoff values Rinj ,1, as listed in table 3 and
shown in figure 13(a). For the range 1.4 <Rinj < 11.8, the cutoff is close to k ∼ 0.19.

Although we see that the unstable wavenumbers increase with Rinj in figure 12,
note that asymptotically as α → ∞ the short wavelengths are stable. To see this, from
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stable for R � 106 above the curve. The values in table 3 are marked by �.

(3.2) we bound

〈(φrDφi − φiDφr )Du〉 � |Du|maxI0I1 � 0.5|Du|max [αI 2
0 + I 2

1 /α],

so that ci < 0 provided that

R <
|Du|max

2α2
(4.1)

(and better bounds are certainly possible). In table 3 the maximal critical wavenumber
is in fact attained at an intermediate Rinj .

4.1. Behaviour of preferred modes for intermediate Rinj .

In our preliminary results in § 2.3, we saw that at fixed values of (R, k, α), increasing
Rinj led to regimes of stabilization, then destabilization, and finally stabilization. For
k � cr,crit , only long wavelengths appear unstable, and how the cutoff values of k and
Rinj vary in this regime are illustrated in figure 10. For the lower range of k, our
results are primarily numerical, indicating a cutoff value k ≈ 0.19 for 1.3 � Rinj � 11.8
and then with decaying cutoff k for 11.8 � Rinj � 20.8, as illustrated in figure 13.
Therefore, we have linear stability as we cross some cutoff frontier, k > k1(Rinj ) in the
(Rinj , k)-plane (alternatively for Rinj >Rinj ,1).

We now consider what happens to the certain eigenmodes (preferred modes) as we
extend the injection crossflow up until the second critical Rinj . Our analysis up to now
suggests that the behaviour may be different depending on whether we consider small
or moderate k. In figure 14, we have plotted the locations of certain eigenmodes as
Rinj is increased, by keeping the Reynolds number, R, constant at 106. This gives us
some idea of how cutoff behaviour changes with Rinj . Although the ‘preferred modes’
are simply those we have selected, we implicitly mean modes that are involved in the
transition from stable to unstable as one of our dimensionless parameters is varied
(here Rinj ), i.e. at some point a preferred mode becomes the least stable mode and
then unstable.

Figure 14(a) shows two eigenmodes corresponding to k =0 (PP flow). A least
stable long-wavelength mode is tracked for α =0.001, denoted by A. This mode is
stable at Rinj = 0 and its stability increases further as Rinj increases up to around 1.7.
However, further increases in Rinj destabilize this mode progressively until it becomes
unstable at Rinj = 25. In the inset of figure 14(a) we have also plotted the least stable
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Figure 14. Behaviour of preferred modes (belonging to different wavelengths and denoted
by letters A–D) under the influence of crossflow with R = 106. Symbols � and � respectively
imply the starting and the ending position of the preferred mode in the ci, cr plane, whereas
the dots (‘.’) trace the locus. The difference in Rinj between consecutive dots is 0.1. (a) k = 0.
Mode A has α = 0.001 and is traced for Rinj = [0,25]. Mode B has α = 3.5227 and is traced for
Rinj = [15, 21] (shown in the inset), the position at Rinj = 15 is marked by ‘∗’. (b) k = 0.5. Mode
C has α = 0.01 and is traced for Rinj = [0,30]. Mode D has α =2.5 and is traced for Rinj = [7,30].

short-wavelength mode at α = 3.5227. Such modes become unstable only under the
influence of crossflow of intermediate strength. This particular mode (denoted by B)
starts becoming unstable approximately when Rinj > 15, but recovers stability later
for Rinj � 20.8. This behaviour is a direct consequence of the trajectory of the NSCs
observed in figure 12(a). The preferred mode B is the critical mode at cutoff (see
table 3). Thus, PP flow with crossflow is unconditionally linearly stable in the range
20.8 � Rinj � 25.

For larger k, the stability behaviour is primarily governed by the long-wavelength
modes, as shown in figure 14(b) for k = 0.5. The least stable mode corresponding to
α = 0.01 is unstable for Rinj =0, denoted mode C. This viscous mode becomes stable
when Rinj increases to 0.6, which is indeed the cutoff value, i.e. Rinj ,1. This is expected
according to table 2. Mode C is weakly damped and its stability increases for Rinj � 3,
after which it starts destabilizing. The mechanism of this destabilization can probably
be analysed along the lines of resonant interactions of the T-S waves (see Baines
et al. 1996). To show this interaction, we have traced the locus (for Rinj = [7, 30])
of the least stable inviscid short-wavelength mode D at α = 2.5. This mode, being
inviscid, remains stable but has ci very close to zero as Rinj increases. The wave
speed cr decreases continuously with Rinj for mode D. The resonant interaction takes
place when its wave speed matches that of mode C, which signals the destabilization
of mode C. This destabilization continues until mode C becomes unstable when
Rinj � 30.

In figure 15 we show examples of the streamfunction for the preferred modes,
corresponding to various k and Rinj in the transitions of figure 14. For the long-
wavelength mode C, figure 15(a–c) shows that strong Rinj appears to skew the
streamlines towards the lower wall. The same is true for the long-wavelength mode A
under strong injection; see figure 15(f ). On the contrary, figure 15(d,e) shows that for
large Rinj , the streamlines of the shorter wavelength mode B are skewed and localized
towards the upper wall.
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Figure 15. Isovalues of the normalized perturbation streamfunctions (ψ̂) for the preferred
modes at R = 106 under different Rinj . The streamwise extent of the domain is one wavelength.
Corresponding to k =0.5, the long-wavelength mode C is shown for (a) Rinj = 0.1 (unstable),

(b) Rinj = 1 (stable) and (c) Rinj = 30 (unstable). Corresponding to k = 0, ψ̂ for two different
preferred modes, viz. A and B, are shown. The shorter wavelength mode B (α = 3.5227) is
shown for (d ) Rinj = 15 (unstable) and (e) Rinj = 21 (stable). The longer wavelength mode A
(α = 0.001) is shown for (f ) Rinj = 25 (unstable).

5. Stability and instability at large Rinj

We now turn to the transition to instability at Rinj ,2 and later to stabilizing effects at
very large Rinj . As observed in § 2.3, the transition at Rinj ,2 appears to be independent
of streamwise Reynolds number R (see figure 5b) and occurs for all k. Although there
is sensitivity to k, it is not very significant. Values of Rinj ,2 are found for all k ∈ [0, 1]
and are in a fairly tight range of Rinj ∼ 22–25.

As suggested in the previous subsection, although instability at moderate Rinj may
be either short wavelength or long wavelength, according to (k−cr,crit ), as we approach
Rinj ,2 from below it is the long wavelengths that are unstable. Figure 16(a) shows
the neutral stability curves corresponding to PP flow for Rinj just above Rinj ,2. The
NSCs are nested with decreasing Rinj , and as we approach Rinj ,2 the upper and lower
branches of the NSC are seen to coalesce. The slope of the two branches suggests that
α ∼ R−1 in the limit of cutoff, and hence the previous long-wavelength approximation,
leading to (3.1), should be effective for predicting the cutoff in the (k, λ)-plane (recall
λ= (αR)−1).

Figure 16(b) shows the NSCs obtained from long-wave approximation. The cutoff
velocity k2 is the maximum value of k encountered along the NSC for a given
Rinj = Rinj ,2. Unlike figure 8, the entire range of k becomes unconditionally stable. For
Rinj ,1 <Rinj < 22.2, ci < 0∀ k ∈ [0, 1]. Another significant difference with figure 8 and
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Figure 16. (a) NSC of PP flow (k =0) when Rinj → R−
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the results of Cowley & Smith (1985) is that ‘bifurcation from infinity’ is not observed
as k → 0. This is possibly because the curves bifurcate from infinity for negative
values of k, but we have not studied this range. Finally, for crossflow rates slightly
greater than Rinj ,2, the Rcrit is relatively low for the entire range of k. For example,
Rinj ,2 ≈ 23.8 for k = 0.5 (implying Rcrit → ∞ as Rinj → R−

inj ,2). Increasing Rinj to 25
decreases Rcrit to around 6000. Thus, on crossing Rinj ,2 we find a dramatic decrease
in the flow stability.

5.1. Linear energy balance at Rinj ,2

An interesting feature of transition at Rinj ,2 is the independence with respect to R.
With reference to the energy equation (3.4), this insensitivity implies that in this range
|T2| is much larger than the viscous dissipation, T3/R. In other words, at criticality
ci = 0 is achieved by a balance of energy production and dissipation within T2, more
so than via balance with the viscous dissipation. Figure 17(a) investigates the energy
budget at criticality for k = 0.5 at Rinj = 25. The critical parameters are observed to
be (αcrit , Rcrit ) = (0.31, 6000). This implies that on crossing the cutoff Rinj ,2, there is
a transition from unconditional stability (Rcrit → ∞) to high instability (Rcrit = 6000).
Comparing with figure 11 (which shows energy distribution corresponding to criticality
for k = 0.5 and Rinj � Rinj ,1), it is obvious that T2 has a higher amplitude while the
viscous dissipation T3/R is weaker.

This behaviour is due to the generation of larger Reynolds stresses τ , as Rinj

increases, as illustrated in figure 17(b). The dominance of T2 over the viscous
dissipation suggests that the critical layers have little to do with instability in this
range. Note that τ is small in the critical layer, which has now moved towards the
channel centre, and hence T2 is also small. Referring to figure 2(b), the vanishing
vorticity gradient (D2u) found in the bulk of the flow domain at high values of Rinj

removes/diminishes the singular effects associated with the critical layer.
The growth of τ is probably not responsible for the spreading of the spectrum

along the real axis, which we have observed in figure 4(b). Equation (3.3) may be
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rewritten as

cr =
〈(α2|φ|2 + |Dφ|2)u〉 +

Rinj

αR
〈α2τ − φrD

3φi + φiD
3φr〉

I 2
1 + α2I 2

0

. (5.1)

The first term leads simply to values of cr in the range of u. The second term
does contain α2τ , i.e. longitudinal gradients of the Reynolds stresses. However, note
that even for the shorter wavelengths we have α ∼ O(1), and if we consider long
wavelengths, we have typically found instability only for αR 	 1. Thus, even for these
larger Rinj , the term involving α2τ is likely to be insignificant.

The extension of cr beyond the usual bounds of the base flow velocity is
therefore due to the third derivative terms in (5.1), which cannot be bounded by
the denominator. Interestingly, therefore, the larger values of cr , which indicate less
regular eigenmodes, also lead to larger viscous dissipation, and hence more stable
modes. This explains the shape of the spectrum in figure 4(b).

In figure 14(b), we tracked the behaviour of mode C as Rinj increased. This mode
becomes unstable for Rinj � Rinj ,2, implying that it governs the transition behaviour.
In figure 18, we show the evolution of the energy balance terms for this mode as Rinj

increases from zero. This mode is stable from Rinj = 0.6 to 30. The cutoff achieved
at Rinj = 0.6 is primarily due to the increased viscous dissipation at both walls. This
phenomenon continues until Rinj ≈ 3; see figure 18(d ). At this point, the ‘viscous
hump’ observed near the lower wall gets amplified. This mechanism is probably due
to the resonant interaction between mode C and an (approximately) neutrally stable
inviscid mode, for example mode D. Further increase in Rinj thins out the viscous
layer at the suction wall faster than that at the injection wall. Suction negates both
the exchange and the dissipation of energy, and the viscous hump is localized within
the lower half of the channel, i.e. injection side. Note that T3/R reduces faster than
T2 and finally the mode becomes unstable when Rinj increases to 30. The condition
at this point is 〈T2〉 > (〈T3〉 /R); see figure 18(f ). Interestingly, the mode becomes
unstable when the viscous hump reaches the centre of the channel. Further increase
of Rinj results in a gradual reduction of T2 and the mode becomes stable again. The
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mean perturbation kinetic energy q(y) distribution provides further insight into the
instability mechanism. It is defined modally to be

q = 1
4

(
|Dφ|2 + α2|φ|2

)
. (5.2)

Figure 19 shows the mean perturbation kinetic energy profiles for mode C at different
Rinj . Each distribution of q has been normalized by its maximum value.

Without any crossflow, the amount of energy in the two halves of the domain is
comparable, the suction half having ∼43 % of the energy (note k = 0.5). Increasing
crossflow up to Rinj �Rinj ,1 = 0.6 increases the secondary peak until the cutoff is
achieved. The energy in the suction half at this point is 46.7 %. The primary peak
moves towards the lower wall but cannot reach it because of the no-slip conditions.
At Rinj > 1, the primary peak starts moving away from the suction wall. At Rinj =3,
the mode is at its maximum stability (see figure 14b). At this point, the perturbation
energy is highly localized within the lower one-eighth of the channel, along with a
small secondary peak at the upper quarter. Further increase of Rinj to 10 causes the
secondary peak to vanish; the energy content in the suction half being only ∼7.6 %.
The resonant interactions of T-S waves result in the development of a secondary peak
from the primary peak itself. During this process, the secondary peak slowly separates
from the primary peak and moves in the direction of the upper wall. For Rinj = 30,
the perturbation reaches the channel centre and the mode becomes unstable. The
amount of energy in the suction half increases to 18.1 %. For even higher values of
Rinj , for example 45, the upper half holds ∼32 % of the energy.

Thus, it appears that the onset of the cutoff at Rinj ,1 occurs when the secondary
peak holds maximum energy. Increasing injection decays this peak until it reaches a
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minimum and then starts to grow out from the primary peak. The end of the cutoff
regime, marked by Rinj >Rinj ,2, occurs when the secondary peak reaches the channel
centre and holds sufficient energy.

5.2. Eventual stabilization at Rinj ,3

We have not studied in detail the eventual stabilization of the flow at very large Rinj

(i.e. Rinj ∼ Rinj ,3), but we believe the energetics of this stabilization are due to a decay
in the energy production. This can be seen most clearly from the identity (3.2), which
is in the same form as that for any parallel shear flow, i.e. crossflow only influences
(3.3) directly. Joseph has used this expression to derive general bounds that depend
on |Du|max , and various functional inequalities; see Joseph (1968, 1969). For example,
we have linear stability provided that

αR|Du|max < max(ξ 2π + 23/2α3, ξ 2π + α2π), (5.3)

where ξ = 2.36502 is the least eigenvalue of a vibrating rod with clamped ends at
y = ± 1.

The condition (5.3) evidently holds for the flows we consider, but is very conservative
and especially so in the limit of large Rinj . This conservatism at large Rinj stems directly
from the simplistic treatment of Du in bounding the energy production term:

〈(φrDφi − φiDφr )Du〉 < |Du|maxI0I1.

With reference to figures 1 and 2 and to (2.11), we see that at large Rinj the base
velocity profile consists of a thin layer near the upper suction wall, within which
Du ∼ |Du|max ∼ Rinj , which has thickness of O(R−1

inj ). Away from this thin boundary

layer, the velocity gradients are of size Du ∼ 2(kRinj )
−1 + O(Rinj e

−Rinj (1−y)). Note,
however, that within this suction layer, we have φ ∼ (1 − y)2 due to the boundary
conditions on the perturbation. Therefore, taking a nominal suction layer boundary
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at y = ys , we may estimate as follows:

〈(φrDφi − φiDφr )Du〉 =

∫ 1−ys

−1

(φrDφi − φiDφr )Du dy +

∫ 1

1−ys

(φrDφi − φiDφr )Du dy

�
2

kRinj

∫ 1−ys

−1

|φrDφi − φiDφr | dy + O(|Du|max (1 − ys)
4)

�
2

kRinj

I0I1 + O
(
R−3

inj

)
. (5.4)

Following Joseph (1969), this leads directly to the bound

2αR

kRinj

� max(ξ 2π + 23/2α3, ξ 2π + α2π), (5.5)

sufficient for linear stability at large Rinj (with asymptotically kRinj � 4 required). In
other words, at large Rinj , the energy production T2 will decay like (kRinj )

−1 at leading
order, so that the viscous dissipation need only be of this order to stabilize the flow.

6. Summary
We have presented a detailed analysis of linear stability and instability in the

(Rinj , k)-plane, for PCP flow with crossflow. The most complete analysis concerns
the important range of low Rinj and modest k. In this range, we have demonstrated
that the stabilization mechanism, due to either injection or wall motion, is essentially
the same. Long wavelengths dominate. Skewing of the velocity profile shifts the
critical layer and at the same time the energy production is diminished until viscous
dissipation dominates at cutoff. In figure 10, we have also shown an interesting
quantitative analogy with the cutoff behaviour of ACP flows; see Sadeghi & Higgins
(1991).

This lower range of Rinj and modest k is probably that which is most important
practically. Essentially, this range allows one to compensate crossflow by wall motion
and vice versa, achieving unconditional linear stability via either mechanism. With
reference to figure 1, it is the range of Rinj in which the crossflow and wall motion
are modifications of a base Poiseuille flow. Because of the scaling, the peak velocity
is always 1, but at larger Rinj with modest k, the Poiseuille component is completely
dominated by crossflow and wall motion.

Globally, the cutoff regimes in the (Rinj , k)-plane are as illustrated in figure 20. The
shaded area shows the region of unconditional linear stability. In the intermediate
range of approximately 1.3 � Rinj � 20.8, values of k � 0.19 are dominated by long
wavelengths and are stable. Below this value, we are able to compute numerical cutoff
curves for fixed R. With the limits of our computations, we cannot determine if these
cutoff curves asymptote to an unconditional cutoff curve as R → ∞.

There appears to be a short band of unconditional linear stability for all computed
values of k around approximately 20.8 � Rinj � 22, before the destabilization occurs at
larger Rinj =Rinj ,2. Because this band can make PP flow unconditionally stable, it could
be effectively used in applications where wall motion is not feasible, e.g. crossflow
filtration, medical dialysis. From the practical perspective, the transition across Rinj ,2

is from unconditional stability to critical values of R which are relatively modest
(e.g. in the range 103–104), just a short distance beyond Rinj ,2. Assuming that the PP
flow is linearly unstable, this means that stabilization can be achieved with crossflow
velocities of the order of 1 % of the mean axial flow velocity.
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This destabilization at Rinj ,2 is again a long-wavelength mechanism, which we have
analysed using the long-wavelength approximation of Cowley & Smith (1985). A
possible cause of this instability has been found to be resonant interactions of the
T-S waves. A study of the linear energetics of the upper limit, Rinj ,2, has shown that
neither viscous dissipation nor the involvement of a critical layer is significant. Rather,
the balance of energy production and dissipation within T2 keeps the mode neutrally
stable. An energy analysis of the preferred mode C has revealed that the precursor
of the transition to instability from unconditional stability is the amplification of
disturbances near the injection wall. The mean perturbation kinetic energy has also
been analysed. It has been shown that the lower limit occurs when the secondary
peak holds maximum energy. Increasing injection decreases the secondary peak until
it reaches a minimum and then it starts to grow from the primary peak. When the
secondary peak reaches the channel centre and holds a sufficient amount of energy,
the unconditional stability mechanism breaks down.

The final stabilization occurring at large Rinj � Rinj ,3 has been analysed using linear
energy bounds. By a careful treatment of the energy production term, we are able to
show that the energy production terms decrease asymptotically like R−1

inj as Rinj → ∞.
We believe that this mechanism leads to the eventual domination of the viscous
dissipation at large enough Rinj .

In terms of the spatial structure of the perturbations, we note that the stabilizations
at small and moderate Rinj are both long-wavelength phenomena for which the
approximation of Cowley & Smith (1985) has been shown effective. Implicitly,
therefore, the critical wavenumbers scale like R−1 in these limits. For the shorter
wavelength instabilities, we have not analysed the asymptotic behaviour of the
wavenumber with R. A more detailed look at the spatial structure of certain
eigenmodes has been presented in figure 15. This shows a skewing of the streamline
recirculatory regimes towards the lower wall for long wavelengths as Rinj is increased,
and towards the upper wall at shorter wavelengths as Rinj is increased.
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